

# **Course Syllabus**

| 1  | Course title                      | Quantum Chemistry                                                           |  |  |
|----|-----------------------------------|-----------------------------------------------------------------------------|--|--|
| 2  | Course number                     | 0333741                                                                     |  |  |
| 3  | Credit hours                      | 3 Hours                                                                     |  |  |
| 3  | Contact hours (theory, practical) | (3,0)                                                                       |  |  |
| 4  | Prerequisites / corequisites      | 0303342, 0301221                                                            |  |  |
| 5  | Program title                     | Master of Science in Chemistry                                              |  |  |
| 6  | Program code                      | 0303                                                                        |  |  |
| 7  | Awarding institution              | The University of Jordan                                                    |  |  |
| 8  | School                            | Science                                                                     |  |  |
| 9  | Department                        | Chemistry                                                                   |  |  |
| 10 | Course level                      | Postgraduate/Master                                                         |  |  |
| 11 | Year of study and semester (s)    | First or second year, Fall or Spring semesters                              |  |  |
| 12 | Other department(s) involved in   | N/A                                                                         |  |  |
| 12 | teaching the course               |                                                                             |  |  |
| 13 | Main teaching language            | English                                                                     |  |  |
| 14 | Delivery method                   | oximes Face to face learning $oximes$ Blended $oximes$ Fully online         |  |  |
| 15 | Online platforms(s)               | $\square$ Moodle $\boxtimes$ Microsoft Teams $\square$ Skype $\square$ Zoom |  |  |
| 13 | Online platforms(s)               | □Others                                                                     |  |  |
| 16 | <b>Issuing/Revision Date</b>      | October 15-2023                                                             |  |  |
|    |                                   |                                                                             |  |  |

### 17 Course Coordinator:

| Name: Wissam Helal                          | Contact hours: S, T, T: 10:30 – 12:30 |
|---------------------------------------------|---------------------------------------|
| Office number: Chemistry extension building | Phone number: 22175                   |
| Email: wissam.helal@ju.edu.jo               |                                       |

### 18 Other instructors:

| N/A |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |

## **19 Course Description:**

Quantum chemistry, intended for postgraduates majoring in chemistry, explore advanced concepts and ideas of quantum mechanics, quantum chemistry, atomic structure and spectroscopy, molecular structure and spectroscopy, and basic electronic structure theory. The course covers theorems and postulates of quantum mechanics; systems with exact solutions of Schrodinger equation, including the hydrogen atom; approximation methods (variational and perturbation theories); electronic structure of atoms and atomic term symbols, electronic structure of diatomic molecules; and an introduction to Hartree-Fock theory.



### 20 Course aims and outcomes:

### A- Aims:

- 1. Develop a solid understanding of the fundamental principles of quantum chemistry.
- 2. Explain the fundamental concepts of and language of quantum chemistry.
- 3. Acquire a quantitative understanding of quantum chemistry, by both expressing concepts into mathematical relations, and by understanding physical concepts behind mathematical formulas. Furthermore, students will be able to derive important mathematical relations.
- 4. Promote problem-solving skills by applying different mathematical methods and techniques to the solution of relevant, but relatively complex, problems.
- 5. Appreciate the continuous interplay between experiment and theory in quantum chemistry.

### B- Course Learning Outcomes (CLOs): Upon successful completion of this course students will be able to:

- CLO-1. Acquire fundamental conceptual way of thinking related to atomic and molecular structure.
- CLO-2. Apply problem solving skills to solve chemical problems using quantum chemistry methods.
- CLO-3. Gain working experience with different computational chemistry tools.



# **21. Topic Outline and Schedule:**

| Week | Lecture                | Topic                                  | Teaching<br>Methods      | <b>Evaluation Methods</b>       | References                      |
|------|------------------------|----------------------------------------|--------------------------|---------------------------------|---------------------------------|
| 1    | 1                      | Chapter 1: The<br>Schrodinger Equation | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 1 |
| 1    | 2                      |                                        | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 1 |
| 2    | 3                      | Chapter 2: The Particle in a Box       | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 2 |
|      | 4                      | Chapter 3: Operators                   | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 3 |
| 3    | 5                      | Chapter 5. Operators                   | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 3 |
|      | 6                      | Chapter 4: The                         | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 4 |
| 4    | 7                      | Harmonic Oscillator                    | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 4 |
|      | 8                      |                                        | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 5 |
| 5    | 9                      |                                        | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 5 |
|      | 10                     |                                        | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 6 |
| 6    | 11                     | Hydrogen Atom                          | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 6 |
|      | 12                     |                                        | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 6 |
| 7    | 13 Chapter 7: Theorems | Face to face<br>lectures               | Written Exams            | Quantum. Chem.,<br>Levine, Ch 7 |                                 |
| ,    | 14                     | of Quantum Mechanics                   | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 7 |
| 8    | 15                     | Chapter 8: The                         | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 8 |
| O    | 16                     |                                        | Face to face<br>lectures | Written Exams                   | Quantum. Chem.,<br>Levine, Ch 8 |



| 9  | 17 | Chapter 9: 18 Perturbation Theory         | Face to face<br>lectures       | Written Exams | Quantum. Chem.,<br>Levine, Ch 9    |
|----|----|-------------------------------------------|--------------------------------|---------------|------------------------------------|
|    | 18 |                                           | Face to face<br>lectures       | Written Exams | Quantum. Chem.,<br>Levine, Ch 9    |
| 10 | 19 | Chapter 10: Electron<br>Spin              | Face to face<br>lectures       | Written Exams | Quantum. Chem.,<br>Levine, Ch 10   |
|    | 20 | Chapter 11: Many-<br>Electron Atoms       | Face to face<br>lectures       | Written Exams | Quantum. Chem.,<br>Levine, Ch 11   |
| 11 | 21 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
|    | 22 | Chapter 12:<br>Computational<br>Chemistry | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
| 12 | 23 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
|    | 24 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
| 13 | 25 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
|    | 26 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
| 14 | 27 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |
| 17 | 28 |                                           | Self Reading & skills learning | Projects      | Practical Comput.<br>Chem., Helal. |



### 22 Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

| <b>Evaluation Activity</b> | Mark | Topic(s)                                           | CLO                         | Period (Week)         | Platform     |
|----------------------------|------|----------------------------------------------------|-----------------------------|-----------------------|--------------|
| Midterm Exam               | 30   | Chapters 1-7                                       | CLO-1                       | 9 <sup>th</sup> Week  | Written exam |
| Project 1                  | 10   | Computational<br>Chemistry<br>techniques           | CLO-3                       | 11 <sup>rd</sup> Week |              |
| Project 2                  | 10   | Computational<br>Chemistry<br>techniques           | CLO-3                       | 13 <sup>th</sup> Week |              |
| Project 3                  | 10   | Computational<br>Chemistry<br>techniques           | CLO-3                       | 15 <sup>th</sup> Week |              |
| Final Exam                 | 40   | Chapters 1-11 + Computational Chemistry techniques | CLO-1 +<br>CLO-2 +<br>CLO-3 | 16 <sup>th</sup> Week | Written exam |

| 23 | Course Requirements |
|----|---------------------|
|    | N/A                 |
|    |                     |
|    |                     |

### 24 Course Policies:

| Α. | Α      | 1     | -  |         |
|----|--------|-------|----|---------|
| Α- | Attend | lance | no | licies: |

Students should attend at least 85% of the total number of the lectures.

B- Absences from exams and submitting assignments on time:

Students who miss an exam must submit and acceptable excuse and then a makeup exam will be appointed.

C- Health and safety procedures:

Followed according to university regulations.

D- Honesty policy regarding cheating, plagiarism, misbehavior: Followed according to university regulations.

- E- Grading policy:
  - 1. Mid exam 30%
  - 2. Projects 30%
  - 3. Final exam: 40%



The letter grade scale is adopted.

F- Available university services that support achievement in the course: Central library, personal computer labs at different locations in the university, e-learning site, faculty member's website.

### 25 References:

OC A 11:4:---1:--C------4:---

## A- Required book(s), assigned reading and audio-visuals:

- 1. I. N. Levine, *Quantum Chemistry*, 7th ed., Pearson Education, Inc., 2014.
- 2. Wissam Helal, Practical Computational Chemistry, A Training Manual of Selected Short Experiments Using Gaussian & ORCA, The University of Jordan, 2023.

## B- Recommended books, materials, and media:

- 1. P. W. Atkins, R. S. Friedman, *Molecular Quantum Mechanics*, 5<sup>th</sup> ed., OUP, 2011.
- 2. J. Lowe, K. Peterson, *Quantum Chemistry*, 3rd ed., Elsevier AP, 2006.
- 3. D. A. McQuarrie, *Quantum Chemistry*, 2nd ed., University Science Books, 2007.
- 4. F. Pilar, *Elementary Quantum Chemistry*, 2nd ed., McGraw-Hill, 1990.
- 5. J. Simons, A. Nichols, Quantum Mechanics in Chemistry, OUP, 1997.

| 20 | 20 Auditoliai ilitorination: |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|
|    | N/A                          |  |  |  |  |  |

| Name of Course Coordinator: Dr Wissam Helal | Signature: Wissam Helal | Date: 15/10/2023 |
|---------------------------------------------|-------------------------|------------------|
| Head of Curriculum Committee/Department:    | Signature:              |                  |
| Head of Department:                         | Signature:              |                  |
| Head of Curriculum Committee/Faculty:       | Signatu                 | re:              |
| Dean:                                       | Signature:              |                  |